Cells in monkey STS responsive to articulated body motions and consequent static posture: a case of implied motion?
نویسندگان
چکیده
We show that populations of visually responsive cells in the anterior part of the superior temporal sulcus (STSa) of the macaque monkey code for the sight of both specific articulated body actions and the consequent articulated static body postures. We define articulated actions as actions where one body part (e.g. a limb or head) moves with respect to the remainder of the body which remains static; conversely non-articulated actions are actions where the equivalent body parts do not move with respect to each other but move as one. Similarly, articulated static body postures contain a torsion or rotation between parts, while non-articulated postures do not. Cells were tested with the sight of articulated and non-articulated actions followed by the resultant articulated or non-articulated static body postures. In addition, the static body postures that formed the start and end of the actions were tested in isolation. The cells studied did not respond to the sight of non-articulated static posture, which formed the starting-point of the action, but responded vigorously to the articulated static posture that formed the end-point of the action. Other static postures resembling the articulated end-point posture, but which were in a more relaxed muscular state (i.e. non-articulated), did not evoke responses. The cells did not respond to body actions that were less often associated with the effective static articulated postures. Our results suggest that the cells' responses were related to the implied action rather than the static posture per se. We propose that the neural representations in STSa for actual biological motion may also extend to biological motion implied from static postures. These representations could play a role in producing the activity in the medial temporal/medial superior temporal (V5(MT)/MST) areas reported in fMRI studies when subjects view still photographs of people in action.
منابع مشابه
The sensitivity of primate STS neurons to walking sequences and to the degree of articulation in static images.
We readily use the form of human figures to determine if they are moving. Human figures that have arms and legs outstretched (articulated) appear to be moving more than figures where the arms and legs are near the body (standing). We tested whether neurons in the macaque monkey superior temporal sulcus (STS), a region known to be involved in processing social stimuli, were sensitive to the degr...
متن کاملAction recognition by motion detection in posture space.
The visual recognition of action can be obtained from the change of body posture over time. Even for point-light stimuli in which the body posture is conveyed by only a few light points, biological motion can be perceived from posture sequence analysis. We present and analyze a formal model of how action recognition may be computed and represented in the brain. This model assumes that motion en...
متن کاملFunctional differentiation of macaque visual temporal cortical neurons using a parametric action space.
Neurons in the rostral superior temporal sulcus (STS) are responsive to displays of body movements. We employed a parametric action space to determine how similarities among actions are represented by visual temporal neurons and how form and motion information contributes to their responses. The stimulus space consisted of a stick-plus-point-light figure performing arm actions and their blends....
متن کاملLearning Representations of Animated Motion Sequences - A Neural Model
The detection and categorization of animate motions is a crucial task underlying social interaction and perceptual decisionmaking. Neural representations of perceived animate objects are built in the primate cortical region STS which is a region of convergent input from intermediate level form and motion representations. Populations of STS cells exist which are selectively responsive to specifi...
متن کاملMaster–slave manipulator for laparoscopic surgery using a 6-axis vertical articulated robot
Laparoscopic surgery is a minimally invasive surgery that accelerates postoperative recovery, but it can only be performed by surgeons with advanced surgical skills. One of the main difficulties in laparoscopic surgery is restriction of free motion of the forceps because of limited degrees of freedom by the trocar. Recently, many master–slave manipulators with a remote center-of-motion mechanis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuropsychologia
دوره 41 13 شماره
صفحات -
تاریخ انتشار 2003